
Les Formulaire
avec Symfony
Première approche

Meetup Symfony Montpellier

mardi 11 octobre 2016 - Kaliop

Qui suis-je?

Julien Vinber

● Développeur Delphi / PHP depuis 15 ans

● Symfony depuis 2 - 3 ans

● Travail chez l’éditeur de logiciel Yooda depuis 8 ans.

1.
L’art de rendre
compliquer ce qui
était simple.

Sans Symfony

▸ 1 fichier
▸ 25 lignes

Mon premier formulaire
basique

Avec Symfony

▸ 4 fichiers
▸ 247 lignes

Exemple sans Symfony

<?php

if (isset($_GET['valider'])){
 $sql = '
 INSERT INTO membre (nom, prenom, mail, telephone, date_naissance) VALUES (
 \''. $_GET['nom'] . '\',
 \''. $_GET['prenom'] . '\',
 \''. $_GET['mail'] . '\',
 \''. $_GET['telephone'] .'\',
 \''. $_GET['dateNaissance'] .'\')
 ';
 $mysqli = new mysqli("localhost", "root", "root", "formation");
}

?>
<h2>Ajouter un membre</ h2>
<form>
 <label for="nom">Nom :</label><input id="nom" name="nom" type="text" />

 <label for="prenom">Prénom :</ label><input id="prenom" name="prenom" type="text" />

 <label for="mail">Mail :</label><input id="mail" name="mail" type="email" />

 <label for="telephone">Téléphone :</ label><input id="telephone" name="telephone" type="tel" />

 <label for="dateNaissance">Naissance :</ label><input id="dateNaissance" name="dateNaissance" type="date" />

 <button name="valider">Ajouter</ button>
</form>

Extrait avec Symfony

…
…

public function addAction(Request $request)
{
 $membre = new Membre();

 $form = $this->createForm (MembreType:: class, $membre);

 $form->handleRequest ($request);

 if ($form->isSubmitted () && $form->isValid()) {
 $em = $this->getDoctrine ()->getManager ();
 $em->persist($membre);
 $em->flush();

 return $this->redirect ($this->generateUrl ('membre_add'));
 }

 return array(
 'form' => $form->createView ()
);
}

…
…

=> C’est plus complexe

2.
Comprendre le
code

Un formulaire et la pour renseigner un objet

/**
* @ORM\Entity
* @ORM\Table()
*/
class Membre
{
 /**
 * @var integer
 * @ORM\Column(type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * @var string
 * @ORM\Column(type="string", length=255)
 */
 protected $nom;

 /**
 * @var string
 * @ORM\Column(type="string", length=255)
 */
 protected $prenom;

 /**
 * @var string
 * @ORM\Column(type="string", length=255)
 */
 protected $mail;

 /**
 * @var string
 * @ORM\Column(type="string", length=25)
 */
 protected $telephone;

 /**
 * @var \DateTime
 * @ORM\Column(type="date")
 */
 protected $dateNaissance;

…
…
…

On décrit un formulaire dans un objet

class MembreType extends AbstractType
{

 public function buildForm(FormBuilderInterface $builder, array $options)
 {
 $builder
 ->add('nom')
 ->add ('prenom')
 ->add ('mail')
 ->add ('telephone')
 ->add ('dateNaissance', BirthdayType:: class)
 ->add ('cree', SubmitType:: class, array('label' => 'Valider'))
 ;
 }

 public function configureOptions (OptionsResolver $resolver)
 {
 $resolver->setDefaults (array(
 'data_class' => 'AppBundle\Entity\Membre'
));
 }
}

Une pincé html

{% extends 'base.html.twig' %}

{% block body %}
 <h2>Ajouter un membre</ h2>
 {{ form(form) }}
{% endblock %}

Enfin le coeur de notre programme, le contrôleur.

class MembreController extends Controller
{
 /**
 * @Route("/membre/add", name="membre_add")
 * @Template()
 */
 public function addAction(Request $request)
 {
 $membre = new Membre();

 $form = $this->createForm (MembreType:: class, $membre);

 $form->handleRequest ($request);

 if ($form->isSubmitted () && $form->isValid()) {
 $em = $this->getDoctrine ()->getManager ();
 $em->persist($membre);
 $em->flush();

 return $this->redirect ($this->generateUrl ('membre_add'));
 }

 return array(
 'form' => $form->createView ()
);
 }
}

3.
La force des
formulaires
Symfony

Gestion des scripte de modification

/**
* @Route("/membre/{idMembre}", name="membre_add", requirements={"idMembre":"add|\d+"})
* @Template()
*/
public function addAction(Request $request, $idMembre)
{
 if ($idMembre == 'add'){
 $membre = new Membre();
 } else {
 $membre = $this->getDoctrine ()->getRepository ("AppBundle:Membre")->find($idMembre);
 }

 $form = $this->createForm (MembreType:: class, $membre);

 $form->handleRequest ($request);

 if ($form->isSubmitted () && $form->isValid()) {
 $em = $this->getDoctrine ()->getManager ();
 if ($idMembre == 'add') {
 $em->persist($membre);
 }
 $em->flush();

 return $this->redirect ($this->generateUrl ('membre_add', array("idMembre" => $membre->getId())));
 }

 return array(
 'form' => $form->createView ()
);
}

Gestion de la validation coter serveur

/**
* @var string
* @ORM\Column(type="string", length=255)
* @Assert\NotBlank()
*/
protected $nom;

…

/**
* @var string
* @ORM\Column(type="string", length=255)
* @Assert\NotBlank()
* @Assert\Email(
* message = "The email '{{ value }}' is not a valid email.",
* checkMX = true
*)
*/
protected $mail;

Validation personaliser

/**
* @Annotation
*/
class IsTelephone extends Constraint
{
 public $message = 'Cela ne ressemble pas à un numéro de téléphone.';
}
…
class IsTelephoneValidator extends ConstraintValidator
{
 public function validate($value, Constraint $constraint)
 {
 if (!preg_match ('/^0[0-9]{9}$/', $value, $matches)) {
 $this->context->buildViolation ($constraint ->message)
 ->setParameter ('%string%', $value)
 ->addViolation ();
 }
 }
}

/**
* @var string
* @ORM\Column(type="string", length=25)
* @Assert\NotBlank()
* @AppAssert\IsTelephone
*/
protected $telephone;

Champs complexe : choix dans une base

class EtatMembre
{
 /**
 * @var integer
 * @ORM\Column(type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * @var string
 * @ORM\Column(type="string", length=255)
 */
 protected $nom;
…

/**
* @ORM\ManyToOne(targetEntity="EtatMembre",
inversedBy="membre")
* @ORM\JoinColumn(referencedColumnName="id")
*/
private $etatMembre;

 $builder
 ->add('nom')
 ->add ('prenom')
 ->add ('mail')
 ->add ('telephone')
 ->add ('dateNaissance', BirthdayType:: class)
 ->add ('etatMembre')
 ->add ('cree', SubmitType:: class,
array('label' => 'Crée le nouveau membre'))
 ;

Champs complexes : sous formulaire, OneToOne

/**
* @ORM\Entity
* @ORM\Table()
*/
class Adresse
{
...

class AdresseType extends AbstractType
{
 public function
buildForm(FormBuilderInterface $builder,
array $options)
 {
 $builder
 ->add('adresse1')
 ->add ('complementAdresse')
 ->add ('codePostal')
 ->add ('ville')
 ;
 }

 public function
configureOptions (OptionsResolver $resolver)
 {
 $resolver->setDefaults (array(
 'data_class' =>
'AppBundle\Entity\Adresse'
));
 }
}

 $builder
 ->add('nom')
 ->add ('prenom')
 ->add ('mail')
 ->add ('telephone')
 ->add ('dateNaissance', BirthdayType:: class)
 ->add ('etatMembre')
 ->add ('adresse', AdresseType:: class)
 ->add ('cree', SubmitType:: class, array('label'
=> 'Crée le nouveau membre'))
 ;

Champs complexes : sous formulaire multiple, OneToMany

Trop de code pour le montrer, mais cela permet d’avoir un
résultat complexe relativement facilement. Pour cela il faut :

▸ Configurer nos entité normalement
▸ Crée le formulaire de notre entité
▸ Ajouter du code JS pour être capable d’ajouter ou

supprimer des ligne
▸ Si le formulaire permet d’éditer un objet existant, alors

il faut ajouter du code pour détecter et supprimer les
sous objet supprimer.

Champs complexes : sous formulaire multiple, OneToMany, exemple

Est plus encore

▸ Protection CSRF (Cross-site request forgery)
▸ Champs personaliser
▸ Personalisation :

▹ D’un champ
▹ D’un formulaire
▹ De tous les formulaires

▸ …

MERCI.

Des questions?
Documentation officiel :

http://symfony.com/doc/current/forms.html

http://symfony.com/doc/current/validation.html

Source de la présentation :

https://github.com/julienVinber/meetup20161011

Mail : julien@vinber.fr

http://symfony.com/doc/current/forms.html
http://symfony.com/doc/current/validation.html
https://github.com/julienVinber/meetup20161011

